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Abstract—This paper aims at exploring accuracy of Kalman-
like filters. Its particular interest lies in estimation of stochastic
systems whose drift coefficients expose a stiff behavior. The
latter means that the Jacobian of the drift coefficient in such
a continuous-discrete system, which is presented by an Itô-type
stochastic differential equation (SDE) for modeling the plant’s
dynamic behavior and a discrete-time equation for simulating
its measurement process, has large eigenvalues at the solution
trajectory. Here, we employ the so-called “discrete-discrete”
approach, which is grounded in SDE discretization schemes, and
compare the outcome accuracy of EKF-, CKF- and UKF-type
methods when these are based on the Euler-Maruyama and
Itô-Taylor discretizations of the strong convergence orders 0.5
and 1.5 and applied for estimating the Van der Pol oscillator and
Oregonator reaction models. We evidence that state estimation
errors committed in our stiff stochastic scenarios are sensitive
to both the type of Kalman filtering method utilized and the
SDE discretization scheme implemented. So these must be chosen
carefully in accurate and robust state estimation algorithms
intended for treating stiff continuous-discrete stochastic systems.

Index Terms—continuous-discrete stochastic system, extended
Kalman filter, cubature Kalman filter, unscented Kalman filter

I. INTRODUCTION

The Kalman filtering methods for treating stiff stochastic
systems arisen in engineering research constitute a novel
topic of state estimation theory discovered recently in [1]–
[5]. The modern stochastic models admit often the following
continuous-discrete formulation [6]:

dx(t) = F
(
t, x(t)

)
dt+Gdw(t), t > 0, (1)

zk = h(xk) + vk, k ≥ 1. (2)

The process model in the stochastic system (1) and (2) is
an Itô-type Stochastic Differential Equation (SDE). In this
SDE, the drift coefficient F : R × Rn → Rn is time-variant
and also depends on the state vector x(t) ∈ Rn evaluated at
time t. Its driving noise term consists of the time-invariant
diffusion matrix G of size n × q and the zero-mean white
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Gaussian process {w(t), t > 0} with covariance Q > 0 of
size q × q, which is considered to be time-invariant, below.
In this paper, the notation Q > 0 refers to the positive
definiteness of the matrix Q. SDE (1) serves for simulating
the plant’s dynamic behavior. Its initial state x0 is a random
and normally distributed variable x0 ∼ N (x̄0,Π0) with mean
x̄0 and covariance Π0 > 0.

The measurement model in the above stochastic system has
the predefined discrete-time form (2), where k stands for a
discrete time index (i.e. xk means x(tk)) and the differentiable
measurement function h : Rn → Rm links the system’s state
xk to the measurement information zk ∈ Rm received at the
sampling time tk. We stress that the measurement vectors
arrive noisy, i.e. these are corrupted by m-dimensional random
vectors vk whose distributions are assumed to be the Gaussian
ones with zero mean and known covariance matrices Rk > 0.
In what follows, we consider that the measurement information
comes equidistantly and with the sampling rate (sampling
period) δ = tk − tk−1. In addition, all random processes in
the stochastic system (1), (2) and its initial state are supposed
to be mutually independent.

The main issue of our interest lies in studying the Kalman
filtering’ performance when the continuous-discrete stochastic
system exposes a stiff behavior. In this case, the Jacobian of
the drift function F (t, x(t)), which means its partial derivative
with respect to the second argument, in SDE (1) has large
eigenvalues at the state trajectory estimated [1], [3]–[5]. In
particular, Kulikov and Kulikova [2], [3] discover that the
traditional Extended Kalman Filter (EKF) used widely in
applied science and engineering can outperform the modern
and more accurate Unscented Kalman Filter (UKF) presented
in [7]–[9] and the recently-designed Cubature Kalman Filter
(CKF) [10], [11]. In the context of the continuous-discrete
Kalman filtering, this counterintuitive phenomenon is justified
from the stability point of view in [5].

Here, we focus upon the EKF-, CKF- and UKF-type
methods built in a different way, which is referred to as
the discrete-discrete approach. In contrast to the continuous-
discrete Kalman filtering methods grounded in ODE solvers,
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the discrete-discrete ones are implemented by means of SDE
discretization schemes, as that explained in [12], for instance.

We have seen that the EKF based on the Euler-Maruyama
discretization of SDE (1) is more accurate and outperforms
the CKF and UKF grounded in the Itô-Taylor expansion of
order 1.5 in treating the stiff stochastic Van der Pol oscillator
[2] and Oregonator reaction [3]. Besides, one might think that
this counterintuitive result stems from the difference in the
SDE discretization methods utilized, i.e. the Euler-Maruyama
formula of order 0.5 (abbreviated to EM-0.5) and the Itô-
Taylor one of order 1.5 (abbreviated to IT-1.5). It is known
that IT-1.5 is theoretically more accurate than EM-0.5. In turn,
the CKF and UKF outperform usually the traditional EKF
in estimating nonstiff stochastic systems (see the above-cited
literature). Thus, our purpose is to build the EKF with IT-
1.5 discretization of SDE (1) and, in return, to implement
the CKF and UKF with use of EM-0.5. We intend, first, for
observing changes in the filters’ performance which can stem
from this alteration and, second, for making a comparison
with the conclusions drawn in [2], [3] to see how the filters’
accuracies depend on the SDE discretization methods applied.

II. THE NOVEL EKF-, CKF- AND UKF-BASED
STATE ESTIMATION METHODS

In Sec. II, we describe the above-announced state estimators
in detail and begin with our novel EKF method.

A. The Extended Kalman Filter Grounded in IT-1.5

As said in Sec. I, we restrict ourselves to the discrete-
discrete fashion of the Kalman filtering under consideration.
This entails that all discretization meshes used in our study
should be of the equidistant form. In other words, for approx-
imating SDE (1), any mesh consists of m− 1 equally spaced
subdivision nodes (with the user-supplied prefixed quantity
m) in each sampling interval [tk−1, tk] of size δ, i.e. its step
size obeys the obvious formula τ = δ/m. We further apply
the discretization method presented in [11] for converting the
given SDE model to the discrete-time form as follows:

xl+1
k−1 = Fd

(
tlk−1, x

l
k−1

)
+ G̃w1 + LF

(
tlk−1, x

l
k−1

)
w2. (3)

In Eq. (3), the matrix G̃ = GQ1/2 is calculated by a right-
multiplication with Q1/2 being the lower triangular factor in
the Cholesky-type factorization of the covariance Q, which is
termed the square root, below. In other words, we employ the
covariance factorization Q = Q1/2Q⊤/2 in which the notation
Q⊤/2 refers to the transposed matrix of the square root Q1/2.
In addition, the discretized drift coefficient obeys the formula

Fd

(
tlk−1, x

l
k−1

)
= xl

k−1 + τF
(
tlk−1, x

l
k−1

)
+ 0.5τ2L0F

(
tlk−1, x

l
k−1

)
(4)

in the outcome stochastic system. Here, the vector xl
k−1

refers to the IT-1.5-based approximation of the state x(tlk−1)
computed by method (3) and (4). Note it is evaluated at the
discrete time tlk−1 = tk−1 + lτ , l = 0, 1, . . . ,m. We recall
that F (·) stands for the drift coefficient in the original process

model (1) and τ = δ/m is the step size of the user-supplied
mesh, which underlies the m-step discretization scheme (3).
The differential operators L0 and Lj appearing in formulas
(3) and (4) are defined mathematically as follows:

L0 =
∂

∂t
+

n∑
i=1

Fi
∂

∂xi
+

1

2

n∑
j,p,r=1

G̃pjG̃rj
∂2

∂xp∂xr
, (5)

Lj =
n∑

i=1

G̃ij
∂

∂xi
, j = 1, 2, . . . , n. (6)

In Eqs (5) and (6), an (i, j)-entry in the above-introduced
matrix G̃ is denoted by G̃ij . The latter formulas im-
ply that an (i, j)-entry in the matrix LF

(
tlk−1, x

l
k−1

)
of

size n × n used in equation (3) is computed by the operator
LjFi

(
tlk−1, x

l
k−1

)
from (6) and entries of the n-dimensional

vector L0F
(
tlk−1, x

l
k−1

)
obey formula (5) in the discretized

drift function (4). The pair of the correlated n-dimensional
random Gaussian variables w1 and w2 is generated from the
pair of the uncorrelated standard random Gaussian variables
ν1 and ν2 by the rule: w1 =

√
τν1, w2 = τ3/2(ν1+ν2/

√
3)/2.

Therefore the covariance matrices of these random variables
are calculated at once as follows:

E{w1w1}=τIn, E{w1w2}=
τ2

2
In, E{w2w2}=

τ3

3
In (7)

where the notation E{·} stands for the expectation operator
and In refers to the identity matrix of size n [11].

The first moment of the random variable xl+1
k−1 defined by

the stochastic process (3) satisfies evidently the relation

E
{
xl+1
k−1

}
= E

{
Fd

(
tlk−1, x

l
k−1

)}
, (8)

where the drift coefficient Fd

(
tlk−1, x

l
k−1

)
comes from for-

mula (4), because both Gaussian variables w1 and w2 are zero-
mean. For simplifying our notation, we set E

{
xl+1
k−1

}
= x̂l+1

k−1,
E
{
xl
k−1

}
= x̂l

k−1 and so on, below.
Next, the state vector xl

k−1 is independent of the noises
w1 and w2 in the stochastic system (3). Then, with use of
covariances (7), Arasaratnam et al. [11] establish the following
second moment recursion:

var
{
xl+1
k−1

}
=var

{
xl
k−1 + τF

(
tlk−1, x

l
k−1

)
+
τ2

2
L0F

(
tlk−1, x

l
k−1

)}
+ τG̃G̃⊤

+
τ2

2
G̃
[
LF

(
tlk−1, x

l
k−1

)]⊤
+
τ2

2

[
LF

(
tlk−1, x

l
k−1

)]
G̃⊤

+
τ3

3

[
LF

(
tlk−1, x̂

l
k−1

)][
LF

(
tlk−1, x̂

l
k−1

)]⊤
. (9)

The EKF technique implies that the moment equations (8)
and (9) are solved approximately in each subdivision interval
[tlk−1, t

l+1
k−1] of the IT-1.5-based discretization (3). This is

fulfilled by means of linearization of the drift coefficient
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F (tlk−1, x
l
k−1) of SDE (1) around the state expectation x̂l

k−1

at each mesh’s node tlk−1, i.e. one uses its Taylor expansion

F
(
tlk−1, x

l
k−1

)
= F

(
tlk−1, x̂

l
k−1

)
+∂xF

(
tlk−1, x̂

l
k−1

)
×

(
xl
k−1−x̂l

k−1

)
+HOT (10)

where ∂xF (tlk−1, x̂
l
k−1) = ∂F (tlk−1, x̂

l
k−1)/∂x

l
k−1 is the cor-

responding partial derivative (Jacobian) of the drift coefficient
F (tlk−1, x

l
k−1) with respect to the variable xl

k−1 and evaluated
at (tlk−1, x̂

l
k−1) and HOT refers to higher-order terms in the

above formula. Then, taking the linear part of expansion (10)
into account and substituting it in the moment equations (8)
and (9), we arrive at the following m-step IT-1.5-based EKF
algorithm.

Algorithm 1. IT-1.5 EKF (Conventional implementation)
INITIALIZATION: (k = 0) x̂0|0 := x̄0, P0|0 := Π0.
TIME UPDATE: (k = 1,K) � PRIORI ESTIMATION

1 Set x̂0
k−1|k−1 := x̂k−1|k−1 and P 0

k−1|k−1 := Pk−1|k−1;
2 For l = 0, 1, . . . ,m− 1 do (with τ := (tk − tk−1)/m)
3 x̂l+1

k−1|k−1 := Fd

(
tlk−1, x̂

l
k−1

)
at tlk−1 := tk−1 + lτ ;

4 P l+1
k−1|k−1 :=

[
M l

k−1

]
P l
k−1|k−1

[
M l

k−1

]⊤
+τ2/2

(
G̃
[
LF

(
tlk−1, x̂

l
k−1

)]⊤
+
[
LF

(
tlk−1, x̂

l
k−1

)]
G̃⊤

)
+τG̃G̃⊤+τ3/3

[
LF

(
tlk−1, x

l
k−1

)][
LF

(
tlk−1, x

l
k−1

)]⊤
where M l

k−1 := In +
(
τ + τ2/2

)
∂xF

(
tlk−1, x̂

l
k−1

)
,

Fd

(
tlk−1, x̂

l
k−1

)
, LF

(
tlk−1, x̂

l
k−1

)
are from (4), (6)

and ∂xF
(
tlk−1, x̂

l
k−1

)
is the Jacobian at x̂l

k−1|k−1;
5 Set x̂k|k−1 := x̂m

k−1|k−1 and Pk|k−1 := Pm
k−1|k−1.

MEASUREMENT UPDATE: � POSTERIORI ESTIMATION

6 Re,k := Rk +
[
∂xh(x̂k|k−1)

]
Pk|k−1

[
∂xh(x̂k|k−1)

]⊤
;

7 Kk := Pk|k−1

[
∂xh(x̂k|k−1)

]⊤
R−1

e,k;
8 x̂k|k := x̂k|k−1 +Kk

(
zk − h(x̂k|k−1)

)
;

9 Pk|k := Pk|k−1 −Kk

[
∂xh(x̂k|k−1)

]
Pk|k−1

where ∂xh(x̂k|k−1) is the Jacobian at x̂k|k−1.

This algorithm computes the linear least-square estimate
x̂k|k of the state x(tk) subject to measurements {z1, . . . , zk}.

B. The Cubature Kalman Filter Grounded in EM-0.5

In contrast to the CKF algorithm presented in [11], our new
variant is grounded in the EM-0.5-based discretization. The
latter method yields a discrete-time stochastic system the form

xl+1
k−1 = xl

k−1 + τF
(
tlk−1, x

l
k−1

)
+Gw̃l

k−1 (11)

with the discretized noise w̃l
k−1 ∼ N (0, τQ) at each node

of the equidistant mesh introduced in a sampling interval
[tk−1, tk]. We emphasize that equation (11) gives the m-step
discretization scheme and, hence, its step size τ = δ/m.

The main idea of the cubature Kalman filtering invented
in [10] is to approximate the first two moments of the
random variable xl+1

k−1, which are n-dimensional Gaussian-
weighted integrals, by means of the third-degree spherical-

radial cubature rule in every subdivision step. For that, one
defines first the cubature nodes (vectors)

ξi =
√
nei, ξn+i = −

√
nei, i = 1, 2, . . . , n, (12)

where ei denotes the i-th unit coordinate vector in Rn and
n refers to the size of SDE (1). Arasaratnam et al. [11, Ap-
pendix B] design their square-root CKF, which is particularly
advantageous in practical implementations. So, we accommo-
date the cited method to the discrete-time stochastic system
(11) and arrive at the following state estimation algorithm.

Algorithm 2. EM-0.5 CKF (Square-root implementation)
INITIALIZATION: (k = 0)

1 Apply Cholesky: Π0 = Π
1/2
0 Π

⊤/2
0 , Q = Q1/2Q⊤/2

where Π
1/2
0 and Q1/2 are lower triangular factors;

2 Set x̂0|0 := x̄0 and P
1/2
0|0 := Π

1/2
0 .

TIME UPDATE: (k = 1,K) � PRIORI ESTIMATION

3 Set x̂0
k−1|k−1 := x̂k−1|k−1 and S0

k−1|k−1 := P
1/2
k−1|k−1;

4 For l = 0, 1, . . . ,m− 1 do (with τ := (tk − tk−1)/m)
5 Generate vectors ξi (i = 1, . . . , 2n) by rule (12);
6 Calculate X l

i,k−1|k−1 := Sl
k−1|k−1ξi + x̂l

k−1|k−1;
7 Matrix X l

k−1|k−1 :=
[
X l

1,k−1|k−1, . . . ,X
l
2n,k−1|k−1

]
;

8 Find Y l+1
i,k−1|k−1:=X l

i,k−1|k−1+τF
(
tlk−1,X l

i,k−1|k−1

)
;

9 Matrix Y l+1
k−1|k−1 :=

[
Y l+1
1,k−1|k−1, . . . ,Y

l+1
2n,k−1|k−1

]
;

10 Compute mean x̂l+1
k−1|k−1 := Y l+1

k−1|k−112n/(2n)

where 12n is the unitary column-vector of size 2n;
11 Yl+1

k−1|k−1 :=
(
Y l+1
k−1|k−1 − 1⊤

2n ⊗ x̂l+1
k−1|k−1

)
/
√
2n

where ⊗ is the Kronecker tensor product (kron);
12 Collect the pre-array and transform[

Yl+1
k−1|k−1,

√
τGQ1/2

]
Θl =

[
Sl+1
k−1|k−1

]
where Θl lower-triangularizes the left-hand matrix;

13 Read-off from the post-array: Sl+1
k−1|k−1;

14 Set x̂k|k−1 := x̂m
k−1|k−1 and P

1/2
k|k−1 := Sm

k−1|k−1.
MEASUREMENT UPDATE: � POSTERIORI ESTIMATION

15 Calculate Xi,k|k−1 :=P
1/2
k|k−1ξi + x̂k|k−1 (i = 1, 2n);

16 Form matrix Xk|k−1 :=
[
X1,k|k−1, . . . ,X2n,k|k−1

]
;

17 Calculate Zi,k|k−1 := h
(
Xi,k|k−1

)
, i = 1, 2, . . . , 2n;

18 Form matrix Zk|k−1 :=
[
Z1,k|k−1, . . . ,Z2n,k|k−1

]
;

19 Compute mean ẑk|k−1 := Zk|k−112n/(2n);
20 Matrix Xk|k−1 :=

(
Xk|k−1 − 1⊤

2n ⊗ x̂k|k−1

)
/
√
2n;

21 Matrix Zk|k−1 :=
(
Zk|k−1 − 1⊤

2n ⊗ ẑk|k−1

)
/
√
2n;

22 Apply Cholesky decomposition: Rk = R
1/2
k R

⊤/2
k ;

23 Collect the pre-array and transform[
Zk|k−1 R

1/2
k

Xk|k−1 0

]
Θk =

[
R

1/2
e,k 0

P̄xz,k P
1/2
k|k

]
where Θk lower-triangularizes the left-hand matrix;

24 Read-off from the post-array: P̄xz,k, R1/2
e,k and P

1/2
k|k ;

25 Calculate Wk := P̄xz,kR
−1/2
e,k ;

26 Derive estimate x̂k|k := x̂k|k−1+Wk(zk − ẑk|k−1).

802



C. The Unscented Kalman Filter Grounded in EM-0.5

The Unscented Kalman Filtering (UKF) is designed as an
advanced state estimation EKF alternative for treating discrete-
time nonlinear stochastic systems [7]–[9]. It is grounded in
the concept of Unscented Transform (UT) presented in the
cited papers in detail. Briefly, the UT considers that the set of
2n+ 1 deterministically selected sigma points (vectors) Xi is
determined in line with the following rule:

X0 = x̂, Xi = x̂+
√
3P 1/2ei, Xi+n = x̂−

√
3P 1/2ei, (13)

i = 1, 2, . . . , n, where ei denotes the i-th unit coordinate
vector in Rn, and P 1/2 refers to the covariance square root,
which is the lower triangular factor in the Cholesky-type
factorization of the covariance in the n-dimensional normally
distributed variable x ∼ N (x̂, P ), i.e. P = P 1/2P⊤/2. Below,
we restrict ourselves to the classical UT parametrization,
which stems from the coefficients

w
(m)
0 = λ/(n+ λ), w

(c)
0 = λ/(n+ λ) + 1− α2 + β,

w
(m)
i = w

(c)
i = 1/(2n+ 2λ), i = 1, . . . , 2n, (14)

with the constants fixed as follows: α = 1, β = 0 and λ =
3− n (see the above-cited papers for further details).

Formulas (13) and (14) are utilized for presentation of the
mean and covariance of the given random variable in the form

x̂ =
2n∑
i=0

w
(m)
i Xi, P =

2n∑
i=0

w
(c)
i (Xi − x̂)(Xi − x̂)⊤. (15)

The main property of this UT is that coefficients (14) are
preserved under any sufficiently smooth mapping F (x) of the
random variable x, but its sigma vectors (13) and the mean x̂
must change to F (Xi), i = 1, 2, . . . , n, and F̂ (x), respectively.
Then, the same formulas (15) are applied for approximation of
the mean and covariance in the transformed random variable
F (x) as well (see more explanation in [7]–[9]).

For treating the above SDE models, the continuous-discrete
UKF is designed in [13]. Here, in contrast to the cited paper,
we implement our novel UKF method by means of the EM-0.5
discretization of SDE (1). In other words, we replace the latter
continuous-time equation with the discrete-time one (11) and,
then, apply the additive (zero-mean) noise case UKF algorithm
in [8, Table 7.3] for treating the resulting discretized model.
So, we arrive at the following EM-0.5-based UKF technique.

Algorithm 3. EM-0.5 UKF (conventional implementation)
INITIALIZATION: (k = 0) Set x̂0|0 := x̄0, P0|0 := Π0;

1 Define vector Wm :=
[
w

(m)
0 , . . . , w

(m)
2n

]⊤ and
matrix W :=

(
I2n+1 − 1⊤

2n+1 ⊗Wm

)
× diag

{
w

(c)
0 , . . . , w

(c)
2n

}(
I2n+1 − 1⊤

2n+1 ⊗Wm

)⊤
where 12n+1 is the unitary column-vector of size
2n+ 1, I2n+1 is the identity matrix of size 2n+ 1,
diag

{
w

(c)
0 , . . . , w

(c)
2n

}
stands for the diagonal matrix

and ⊗ is the Kronecker tensor product (kron).
TIME UPDATE: (k = 1,K) � PRIORI ESTIMATION

2 Set x̂0
k−1|k−1 := x̂k−1|k−1 and P 0

k−1|k−1 := Pk−1|k−1;

3 For l = 0, 1, . . . ,m− 1 do (with τ := (tk − tk−1)/m)
4 Factorize P l

k−1|k−1 =
[
Sl
k−1|k−1

][
Sl
k−1|k−1

]⊤
;

5 Generate sigma vectors X l
i,k−1|k−1 (i = 0, . . . , 2n)

by (13) with P 1/2 := Sl
k−1|k−1 and x̂ := x̂l

k−1|k−1;
6 Matrix X l

k−1|k−1 :=
[
X l

0,k−1|k−1, . . . ,X
l
2n,k−1|k−1

]
;

7 Find Y l+1
i,k−1|k−1 :=X l

i,k−1|k−1+τF
(
tlk−1,X l

i,k−1|k−1

)
;

8 Matrix Y l+1
k−1|k−1 :=

[
Y l+1
0,k−1|k−1, . . . ,Y

l+1
2n,k−1|k−1

]
;

9 Compute mean x̂l+1
k−1|k−1 := Y l+1

k−1|k−1Wm;

10 P l+1
k−1|k−1 :=

[
Y l+1
k−1|k−1

]
W

[
Y l+1
k−1|k−1

]⊤
+τGQG⊤;

11 Set x̂k|k−1 := x̂m
k−1|k−1 and Pk|k−1 := Pm

k−1|k−1.
MEASUREMENT UPDATE: � POSTERIORI ESTIMATION

12 Cholesky factorization: Pk|k−1 = P
1/2
k|k−1P

⊤/2
k|k−1;

13 Generate sigma vectors Xi,k|k−1 (i = 0, . . . , 2n)
by (13) with P 1/2 := P

1/2
k|k−1 and x̂ := x̂k|k−1;

14 Form matrix Xk|k−1 :=
[
X0,k|k−1, . . . ,X2n,k|k−1

]
;

15 Calculate Zi,k|k−1 := h
(
Xi,k|k−1

)
, i = 0, 1, . . . , 2n;

16 Form matrix Zk|k−1 :=
[
Z0,k|k−1, . . . ,Z2n,k|k−1

]
;

17 Compute mean ẑk|k−1 := Zk|k−1Wm;
18 Find Pzz,k|k−1 := Zk|k−1WZ⊤

k|k−1 +Rk;
19 Calculate Pxz,k|k−1 := Xk|k−1WZ⊤

k|k−1;
20 Find Wk := Pxz,k|k−1P

−1
zz,k|k−1;

21 Compute estimate x̂k|k := x̂k|k−1+Wk(zk − ẑk|k−1);
22 Calculate Pk|k := Pk|k−1 +WkPzz,k|k−1WT

k .

In the next section, we intend for examination of the filtering
methods presented in Sec. II and their comparison to the
earlier-published EKF, CKF and UKF techniques on stiff
variants of the stochastic Van der Pol oscillator studied in [1],
[2] and the stochastic Oregonator reaction considered in [3].

III. FILTERS’ ACCURACY EXAMINATION

Here, our intention is to see the link of the filters’ accuracies
to the type of Kalman filtering implemented (i.e. EKF, CKF or
UKF) and the SDE dicretization scheme utilized (i.e. EM-0.5
or IT-1.5). The filters’ performances are assessed exactly in the
way that has been already presented in [2], [3] at large. Briefly,
we simulate true states of each stochastic system via solving
the corresponding SDE (1) by the Euler-Maruyama method
with the tiny step size equal to 10−5 in the simulation interval
[t0, tend] in MATLAB. These are used in the true measurement
generation procedure of our numerical study and for evaluation
of errors committed by the state estimators under considera-
tion. Such errors are assessed on average in the form of the
Accumulated Root Mean Square Error (ARMSE) derived via
100 independent Monte Carlo runs. For a fair comparison, all
the filters utilize the same measurement histories and process
and measurement noise realizations. Eventually, we come to
the standard ARMSE estimation formula

ARMSE :=
( 1

100K

100∑
l=1

K∑
k=1

n∑
i=1

(
xiref,l(tk)−x̂ik|k,l

)2)1/2

where the subscript ref distinguishes our reference stochastic
solutions, i indicates the true and estimated state entries (i.e.
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Fig. 1. The accuracies of the old and new EKF, CKF and UKF methods
observed in our stiff stochastic Van der Pol oscillator scenario.

n is the size of the given SDE model), l refers to a particular
Monte Carlo simulation, k marks the corresponding sampling
instant tk and K := [(tend − t0)/δ], where [·] stands for the
integer part of the number and δ is a sampling rate accepted
in our experiment.

A. The Stiff Stochastic Van Der Pol Oscillator Scenario

Following [1], [2], our first SDE model is taken as follows:

d

[
x1(t)
x2(t)

]
=

[
x2(t)

104
[(
1− x12(t)

)
x2(t)− x1(t)

] ]
dt

+

[
0 0
0 1

]
dw(t)

with the noise w(t) ∼ N (0, I2) and the simulation interval
[0, 2]. Similarly to the cited papers, the filters’ initial values
are set to be: x̄0 = [x̄1(0), x̄2(0)]⊤ = [2, 0]⊤ and Π0 =
diag{10−1, 10−1}. This SDE model is observed partially, i.e.
with the noise vk ∼ N (0, 0.04), it entails the scheme

zk = x1(tk) + vk.

The accuracies of all the EKF, CKF and UKF discussed in
Sec. II and observed within our stiff Van der Pol oscillator
scenario are exposed in Fig. 1. Following [2], these filters are
implemented with 2 × 105 equidistant subdivisions of each
sampling interval [tk, tk−1], i.e. with m = 2×105 in the above
m-step filtering algorithms. The ARMSEs committed by our
new filtering techniques have the subscript new in contrast
to the errors of the remaining methods whose accuracies are
copied from [2] and distinguished with the subscript old in
Fig. 1. Here and below, all plots are scaled logarithmically.

First, in contrast to the IT-1.5-based CKF in [2], our novel
EM-0.5-based CKF and UKF fail and return NaN at all
sampling rates δ = 0.2, 0.3, . . . , 0.6 utilized in our Van der
Pol oscillator scenario. That is why these data are absent in
Fig. 1. Second, the situation becomes more complicated in the
EKF-type Kalman filtering methods, i.e. the discretization EM-
0.5 allows for the smaller ARMSEs observed at the shorter
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Fig. 2. The accuracies of the old and new EKF, CKF and UKF methods
observed in our stiff stochastic Oregonator reaction scenario.

sampling times, whereas the other one IT-1.5 yields higher
accuracies at the lower sampling rates considered here. All
this can be explained by the larger discretization errors of EM-
0.5. Third, both EM-0.5- and IT-1.5-based EKFs outperform
the CKF and UKF with either discretization. The latter fact
has been addressed for the continuous-discrete filtering in [5].

B. The Stiff Stochastic Oreginator Reaction Scenario

Following [3], our second SDE model is taken as follows:

d

x1(t)x2(t)
x3(t)

 =

 0 0 0
0 0 0
0 0 0.1

dw(t)
+

77.27[x2(t)+x1(t)
(
1−8.375×10−6x1(t)−x2(t)

)][
x3(t)− x2(t)

(
1 + x1(t)

)]
/77.27

0.161
(
x1(t)− x3(t)

)
dt

with the noise w(t) ∼ N (0, I3) and the simulation interval
[0, 60]. The initial values are: x̄0 = [x̄1(0), x̄2(0), x̄3(0)]⊤ =
[4, 1.1, 4]⊤, Π0 = diag{10−2, 10−2, 10−2} in all the filters.
The above SDE model is supposed to be fully observed, i.e.

zk = x1(tk) + x2(tk) + x3(tk) + vk

with the measurement noise vk ∼ N (0, 0.04). The ARMSEs
of our filtering methods computed at the sampling rates δ =
2, 3, . . . , 10 in MATLAB are displayed in Fig. 2. Following
[3], these filters are applied with m = 5 × 105 equidistant
subdivisions of each sampling interval [tk, tk−1], i.e. with m =
5× 105 in the above m-step filtering algorithms.

In our stiff Oregonator scenario, the IT-1.5-based CKF and
UKF methods are more accurate in comparison to the EM-0.5-
based ones, again. Besides, the EKF-type estimators expose
the same ARMSEs irrespective of the discretization used.
Nevertheless, similarly to the outcome of Sec. III-A, the EKF-
type methods outperform always the CKF and UKF ones with
either discretization in our stiff stochastic Oregonator reaction
scenario.
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IV. CONCLUSION

This paper has studied state estimation accuracies of some
discrete-discrete filters depending on the type of Kalman
filtering technique implemented (i.e. EKF, CKF or UKF)
and on the SDE dicretization scheme utilized (i.e. EM-0.5
or IT-1.5) when applied to treating stiff continuous-discrete
stochastic systems. In particular, we have developed the EM-
0.5-based CKF and UKF methods and the EKF grounded in
IT-1.5, as well. These novel state estimators have been used for
solving two stiff practical problems in electrical and chemical
engineering, namely, for estimating the stochastic Van der
Pol oscillator and Oregonator reaction models considered also
in [2] and [3], respectively. In addition, the committed state
estimation errors have been compared to those derived in the
cited papers. Eventually, we have concluded that the EKF-type
state estimation technique and the SDE discretization IT-1.5
are preferable and produce more accurate state estimates in
both stiff stochastic scenarios considered in our case study.
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